教授/博士生導師
qianj@ujs.edu.cn
錢靜,女,江蘇徐州人,教授/博士生導師。2005年7月畢業于南京師範大學,獲理學學士學位;2008年6月畢業于菠菜技术交流论坛,獲工學碩士學位;2012年3月畢業于東南大學,獲工學博士學位;2016年3月-2016年11月,香港浸會大學(Hong Kong Baptist University),博士後;2016年11月-2018年10月,美國佐治亞理工學院(Georgia Institute of Technology),博士後。研究方向為功能納米材料設計制備及智能傳感器件研制,已在Materials Today,Journal of Materials Chemistry A,Chemical Engineering Journal,Analytical Chemistry,Chemical Communications,ACS Applied Materials & Interfaces,Biosensors and Bioelectronics等國際著名期刊發表SCI論文100餘篇,申請中國發明專利20 餘件,撰寫專著英文專章1章。
▲主持科研項目
1. 國家自然科學基金面上項目(No. 21976071), 2020.01-2023.12。
2. 菠菜技术交流论坛農業裝備學部項目(No. NZXB20200211),2020.09-2022.08。
3. 企業橫向課題100萬元(No. 20210228),2020.12-2022.12。
4. 國家自然科學基金項目(No. 21405063),2015.01-2017.12。
5. 江蘇省自然科學基金項目(No. BK20130481),2013.07-2016.06。
6. 中國博士後科學基金特别資助 (No. 2015T80517),2015.06-2018.11。
7. 中國博士後科學基金面上項目(No. 2012M520998),2012.09-2014.09。
▲主要榮譽
2012年,菠菜技术交流论坛第六屆教師教學競賽二等獎;
2015年,菠菜技术交流论坛優秀學業導師;
2015年,菠菜技术交流论坛“青年骨幹教師培養工程”青年學術帶頭人培育人選;
2020年,菠菜技术交流论坛教師微課教學競賽一等獎。
▲代表作論文
[1] 通訊作者, A smart material built upon the photothermochromic effect and its use for managing indoor temperature, Chemical Communications, 2021, 57, 8628–8631.
[2] 通訊作者, Controlling the ligands of CdZnTe quantum dots to design a super simple ratiometric fluorescence nanosensor for silver ion detection, Analyst, 2021, 146, 5747–5755.
[3] 通訊作者, A FRET aptasensor for sensitive detection of aflatoxin B1 based on a novel donor–acceptor pair between ZnS quantum dots and Ag nanocubes, Analytical Methods, 2021, 13, 462–468.
[4]通訊作者, Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets, Chemical Engineering Journal, 2020, 401, 126017.
[5]第一作者, Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1, Biosensors and Bioelectronics, 2020, 166, 112443.
[6] 通訊作者, Controlling over the terminal functionalities of thiol-capped CdZnTe QDs to develop fluorescence nanosensor for selective discrimination and determination of Fe(II) ions, Sensors & Actuators: B. Chemical, 2020, 322, 128636.
[7] 第一作者, Fabricating a signal-off photoelectrochemical sensor based on BiPO4-graphene quantum dots nanocomposites for sensitive and selective detection of hydroquinone, Journal of Electroanalytical Chemistry, 2020, 868, 114177.
[8] 通訊作者, Porous gold nanocages: High atom utilization for thiolated aptamer immobilization to well balance the simplicity, sensitivity, and cost of disposable aptasensors, Analytical Chemistry, 2019, 91, 8660–8666.
[9] 第一作者, Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots, Analytica Chimica Acta, 2019, 1047, 163–171.
[10] 通訊作者, A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of afatoxin B1, Analyst, 2019, 144, 4772–4780.
[11] 通訊作者, A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor, Analyst, 2019, 144, 6004–6010.
[12] 第一作者, Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction, Materials Today, 2018, 21, 834–844.
[13]第一作者, Magnetically controlled immunosensor for highly sensitive detection of carcinoembryonic antigen based on an efficient “turn-on” cyanine fluorophore, Sensors and Actuators B, 2018, 258, 133–140.
[14] 第一作者, Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1, Analytica Chimica Acta, 2018, 1019,119–127.
[15]共同第一作者, Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosensors and Bioelectronics, 2018, 108, 69–75.
[16] 第一作者, Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of CdTe quantum dots-based hybrid probe, Sensors and Actuators B, 2017, 241, 1153–1160.
[17] 共同第一作者, Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels, Biosensors and Bioelectronics, 2017, 89, 802–809.
[18] 通訊作者, Nickel–cobalt-layered double hydroxide nanosheet arrays on Ni foam as a bifunctional electrocatalyst for overall water splitting, Dalton Transactions, 2017, 46, 8372 –8376.
[19] 通訊作者, A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode, Sensors and Actuators B, 2017, 251, 192–199.
[20] 第一作者, Fabrication of L-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive, Analytica Chimica Acta, 2016, 946, 80–87.
[21] 共同第一作者, Colorimetric aptasensing of ochratoxin A using Au@ Fe3O4 nanoparticles as signal indicator and magnetic separator, Biosensors and Bioelectronics, 2016, 77, 1183–1191.
[22] 第一作者, One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos, Journal of Materials Chemistry A, 2015, 3, 13671–13678.
[23] 第一作者, A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A, Analyst, 2015, 140, 7434–7442.
[24] 第一作者, Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing, Journal of Materials Chemistry B, 2015, 3, 1624–1632.
[25]共同第一作者, Nitrogen-doped graphene quantum dots@SiO2 nanoparticles as electrochemiluminescence and fluorescence signal indicators for magnetically controlled aptasensor with dual detection channels. ACS Applied Materials & Interfaces, 2015, 7, 26865−26873.
[26] 共同第一作者, Onsite naked eyed etermination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio, Biosensors and Bioelectronics, 2015, 65, 83–90.
[27] 共同第一作者, A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide, Biosensors and Bioelectronics, 2015, 65, 39–46.
[28] 共同第一作者, Magnetic-fluorescent-targeting multifunctional aptasensor for highly sensitive and one-step rapid detection of ochratoxin A, Biosensors and Bioelectronics, 2015, 68, 783–790.
[29] 通訊作者, Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions, Analytica Chimica Acta, 2015, 888, 173–181.
[30] 第一作者, Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)32+ for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing, Biosensors and Bioelectronics, 2014, 57, 149–156.
[31] 第一作者, Facile preparation of Fe3O4 nanospheres/reduced graphene oxidenanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine, Sensors and Actuators B, 2014, 201, 160–166.
[32] 第一作者, Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density, Analyst, 2014, 139, 5587–5593.
[33] 第一作者, Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites, Applied Surface Science, 2014, 288, 633–640.
[34] 共同第一作者, Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A, Analytica Chimica Acta, 2014, 806, 128–135.
[35] 共同第一作者, Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy, Bioelectrochemistry, 2014, 96, 7–13.
[36] 第一作者, A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles, Analytica Chimica Acta, 2013, 763, 43–49.
[37] 第一作者, Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels, Biosensors and Bioelectronics, 2011, 28(1), 314–319.
[38] 第一作者, Three-dimensionally microporous polypyrene film as an efficient matrix for enzyme immobilization, Analytical & Bioanalytical Electrochemistry, 2011, 3(3), 233–248.
[39] 第一作者, Versatile immunosensor using quantum dot coated silica nanosphere as label for signal amplification, Analytical Chemistry, 2010, 82(15), 6422–6429.
[40] 第一作者, Electrochemi-luminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels, Analytica Chimica Acta, 2010, 665(1), 32–38.